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Abstract logistical challenges of working with the real operational
military community. This paper will begin by setting the

This paper describes a computational process model of context for the modeling through some background
basic aircraft maneuvering. It is an embodied performance information on the STE. We then describe the
model, implemented in ACT-R, that operates a Predator representations and processes built into the model and
UAV synthetic task environment. The design of the model compare the model's performance to human performance.
is borrowed from the Control and Performance Concept, a The paper concludes with a description of methodological
widely taught technique for instrument flight, and from and implementation details that make this cognitive
discussions with subject matter experts. Comparisons with modeling effort distinctive.
human data show the model to be a good approximation to
expert human performance, although the model shows
more intra-maneuver variability. The paper concludes with Background on UAV STE
a description of methodological and implementation details The core of the STE is a realistic simulation of the flight
that make this cognitive modeling effort distinctive, dynamics of the Predator RQ-1A System 4 UAV. This

core aerodynamics model has been used to train Air Force
Introduction Predator operators at Indian Springs Air Field in Nevada.

There is a long and rich history of human performance Built on top of the core Predator model are three synthetic
modeling in aviation psychology, extending back to the tasks: the Basic Maneuvering Task, in which a pilot must
creation of the Psychology Branch of the Aero Medical make very precise, constant-rate changes in UAV
Laboratory at Wright Field in 1945, with Paul Fitts as its airspeed, altitude and/or heading; the Landing Task in
first Director (Pew, 2001). Over the subsequent decades, which the UAV must be guided through a standard
psychologists, engineers, and computer scientists have approach and landing; and the Reconnaissance Task in
investigated a wide variety of phenomena associated with which the goal is to obtain simulated video of a ground
situation awareness, aircraft control, attention, and task target through a small break in cloud cover. The design
management. Wickens (2002) notes that a great deal of philosophy and methodology for the STE are described in
laboratory research has taken place to isolate and Martin, Lyon, and Schreiber (1998). Tests using military
understand these complex perceptual, cognitive, and and civilian pilots showed that experienced UAV pilots
psychomotor processes. He goes on to suggest that perform better in the STE than pilots who are highly
"modeling the complex interactions among these experienced in other aircraft but have no Predator
phenomena remains a critical challenge posed by aviation experience, indicating that the STE is realistic enough to
to psychological researchers who are interested in 'scaling tap UAV-specific pilot skill (Schreiber, Lyon, Martin, &
up' their theories to real-world problems" (p. 132). Confer, 2002).

We have taken on precisely this challenge in using an Basic maneuvering is the focus of the current modeling
integrated cognitive architecture to develop a effort. The structure of the task was adapted from an
computational cognitive process model of basic aircraft instrument flight task designed at the University of
maneuvering. Specifically, it is a model of an air vehicle Illinois to study expertise-related effects on pilots' visual
operator (AVO) for a Predator Uninhabited Air Vehicle scan patterns (Bellenkes, Wickens, & Kramer, 1997). The
(UAV). The model interacts with a Synthetic Task task requires the operator to fly seven distinct maneuvers
Environment (STE) created for use by cognitive scientists while trying to minimize root-mean-squared deviation
who are interested in conducting their research in the (RMSD) from ideal performance on altitude, airspeed,
context of an operationally-validated task, without the and heading. Each maneuver starts with a 10-second
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straight and level lead-in section as the participant STE relies on a reimplementation of the control inputs
prepares to execute the maneuver. At the end of this lead- process to receive input from the cognitive model instead
in, the timed maneuver segment (either 60 or 90 seconds) of the stick and throttle. Another process running on the
begins and the operator is required to maneuver the cognitive model platform receives data from the STE, and
aircraft at a constant rate of change with regard to one or makes that data available to the cognitive model via a
more of the three flight performance parameters. The Lisp-based "mock HUD", which is where the model
initial three maneuvers require the operator to change one actually gets its instrument readings while it is flying.
parameter while holding the other two constant. For
example, in Maneuver 1 the goal is to reduce airspeed The Model
from 67 knots to 62 knots at a constant rate of change, Description of the model will begin with an explanation
while maintaining altitude and heading, over a 60-second of the general task management structure, continue with
trial. They increase in complexity by requiring the the representation of declarative and procedural
operator to fly maneuvers that change in combinations of knowledge for flying a UAV, and finish with a section on
two parameters. Maneuver 4, for instance, is a constant-
rate 1800 left turn, while simultaneously increasing architectural parameters used in the model.

airspeed from 62 to 67 knots. The final maneuver requires The Control and Performance Concept
changing all three parameters simultaneously: decrease
altitude, increase airspeed, and change heading 2700 over There is an instrument flight strategy called the "Control
a 90-second trial, and Performance Concept" (Air Force Manual on

During the basic maneuvering task the operator sees Instrument Flight, 2000). This aircraft control process
only the Heads-Up Display (HUD). The HUD includes involves first establishing appropriate control settings
various digital and analog instruments, such as Angle of (pitch, bank, power) for the desired aircraft performance,
Attack (AOA), Airspeed, Heading (bottom center of and then crosschecking the instruments to determine
display), Vertical Speed Indicator, RPM's (indicating the whether the desired performance is actually being
throttle setting), and Altitude. The digital displays move achieved. The rationale behind this strategy is that control
up and down as the value of the instrument changes. instruments have an immediate first order effect on the
There is also a reticle and horizon line, which together behavior of the aircraft which shows up as a delayed
indicate the pitch and bank of the aircraft. second order effect in the performance instrument

At the end of a trial, the results for the altitude, airspeed readings.
and heading deviations are displayed graphically, with At the beginning of a trial, the model first uses the stick
actual and desired values on each performance parameter and throttle to establish appropriate control settings (pitch,
plotted across time. Quantitative RMSD's provide bank, power), then it initiates a crosscheck of the
numerical feedback for tracking performance. instruments to assess performance and to insure that

Gray (2002) noted that one of the challenges involved control settings are maintained. In the process of
in using existing simulation environments in research on executing the crosscheck, if the model determines that an
computational human behavior representation is that instrument value is out of tolerance, it will adjust the
typically those environments were not designed for controls appropriately. A subtle implication is that, in
interaction with a cognitive architecture and are order to effectively use the Control and Performance
implemented in a different programming language than is Concept, it is necessary for a pilot (or a model) to know
the modeling architecture. An attractive and common what the appropriate control settings are for various types
solution to this challenge is to reimplement or backwards of desired aircraft performance. That brings us to the next
engineer the simulation into a form amenable to cognitive section of the paper, on knowledge representation for the
modeling. In the case of the current project, however, UAV Operator Model.
reimplementation of the aerodynamics model and real-
time simulation of aircraft handling in Lisp was not a Declarative Knowledge
reasonable option. It was imperative that a way be found Declarative knowledge is represented in four critical ways
to get the model to interact directly with the existing STE. in this model: the goal chunk, crosscheck intent chunks,
This was somewhat of a challenge, because the model is instrument chunks, and knowledge of appropriate control
implemented in ACT-R 5.0 (Anderson, Bothell, Byrne, & settings. Each of these is discussed below.
Lebiere, 2002), running on top of Allegro Common Lisp The goal chunk contains the knowledge, or links to the
(ACL) 6.2, while the UAV STE is coded in C. The knowledge, needed to fly the Predator. It serves the
solution has been to run the cognitive model on a separate purpose of representing the operator's situation
hardware platform and give it some Lisp code that awareness. The goal chunk is organized hierarchically
communicates with the STE through a non-blocking into three categories: maneuver knowledge (e.g., intent of
socket "polling" mechanism. The current interface to the the maneuver, how long into the trial it is), control
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knowledge (e.g., current, desired, and deviation values for at the start of a trial, via ACT-R's audition module, or by
the control instruments), and performance knowledge recognition that the lead-in period is nearing completion.
(e.g., current, desired, and deviation values for the The model has separate productions for establishing
performance instruments). Clearly this is a lot of control and crosschecking, since the behavior of the
information, all of which is important to instrument flight, model is different in these two cases. Establishing control
A common modeling practice in ACT-R models is to begins with the selection of an instrument for which
restrict the size of declarative memory chunks to 3-5 slots, control needs to be established. This happens at two key
In the case of the goal chunk for the UAV Operator points: 1) at the beginning of a trial when the values of
Model, however, we found this to be unmanageably control instruments are first set, and 2) whenever the
restrictive. There is just too much information about the assessment of a control instrument shows a large enough
pilot's cognitive state and the aircraft's physical state that deviation to cause the model to focus on a control
needs to be available for decision making. On the other instrument. Through a series of production firings, (Find,
hand, having all aircraft state data available to the model Attend, Encode), attention shifts to the control instrument
at all times would be too powerful. Therefore, the and its current value is encoded. If the desired-value is not
productions are designed in such a way that, at any one already available in the goal chunk from a previous
time, only a few slots in the goal chunk are actually used. attention-decision cycle, it is retrieved from memory
For example, if the model has just attended to airspeed, (Retrieve-Desired). The current-value and desired-value
then the current-airspeed slot is available to the model. are compared and a numeric deviation is computed which
Slots with values from previous attention-decision cycles is converted into a qualitative value (e.g. very-small,
are not assumed to be available, and new values must be small, medium, large, very-large) during Set-Deviation.
encoded from the instruments or retrieved from memory. Then the qualitative size of the deviation is considered
Thus, although the goal chunk has a sizeable number of and, if necessary, an adjustment is made to the stick or
slots, only a few of them have available values at any one throttle (Assess-Adjust). If an adjustment is required
time. because a control instrument is off, the model sets its state

Movement of attention from one instrument to the next to continue focusing on the control instrument on the next
is decided via retrieval of a crosscheck-intent chunk, production cycle. Otherwise, the model sets its state to
based on the current instrument, the maneuver intent, and begin, or return to, a normal crosscheck.
the time-segment. The retrieval of a crosscheck-intent The process of crosschecking is largely identical to the
chunk also sets the context for the current attention- process of establishing control. The major difference is
decision cycle (i.e., standard crosscheck or control focus). that both the control and performance instruments are

The model assumes the operator has declarative candidates for attention. If the model attends to an
representations of the instruments on the HUD. instrument that deviates significantly from the desired
Instrument chunks contain a slot for the location of the value, it returns to the control loop. Moderate deviations
instrument and a slot for encoding the current value of result in adjustments to the stick and/or throttle without
that instrument, leaving the crosscheck loop.

Finally, the model represents knowledge of the control
settings that are appropriate for executing the required Parameter Settings
maneuvers. This knowledge is crucial for establishing the A variety of parameters in ACT-R can be modified to
correct settings at the start of a trial, following the lead-in influence the behavior of a model. One of the long-term
period. Knowledge of the desired control instrument architectural goals in the ACT-R community is to settle
settings at given points in a scenario (e.g. 15 seconds, 30 on default, or at least "commonly accepted," values for all
seconds, 45 seconds) is important for insuring that the of these parameters, in order to further guide the process
control instrument settings are being maintained and that of developing a model. The parameters that are relevant to
performance objectives are being achieved, the UAV Operator Model (with their values in parens)

are: Production Utility Noise (1), Goal Weight (1),
Procedural Knowledge Latency Factor (1), Decay Rate (.5), and Activation Noise
In order to do well on the basic maneuvering trials in the (.25). These are all values that are considered to be
STE, the moment the trial starts the pilot must initiate a architectural defaults, or values that have been commonly
maneuver that results in approximately the right rate of used in other models.
change in the performance instruments. Therefore, there It is important to emphasize that this is an ACT-R
is a set of productions that are specific to the maneuver model with default values for the parameters mentioned
being executed and that represent learned behavior about above, and the design of the model is a direct translation
how to initiate that maneuver. The execution of these of a well-known instrument flight technique. Nothing
productions is triggered by an auditory beep which occurs about the design of the model or the global parameters
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above is tuned or optimized to any specific dataset. The The model data are an average of 20 model runs in each
question remaining to be addressed is ... when ACT-R maneuver. The model data are converted to z scores by a
uses the Control and Performance Concept to operate the linear transformation, using the mean and standard
Predator UAV STE, how does its performance compare deviation from the normalization of the RMSD's in the
with human pilot performance? SME data. Model data are aggregated up in the same

manner as the human data. The model data are plotted as
Comparison with Human Data a point prediction because we use exactly the same model

Human data were collected from seven aviation Subject for every run, without varying any of the knowledge or

Matter Experts (SMEs) at our lab in Mesa, Arizona. parameters that might be varied in order to account for
individual differences. The model is a baseline

These are experienced Air Force pilots with an average of represenatio n cof .the man e of a sing l ig l

more than 3000 hours of flight time in different aircraft, representation of the performance of a single, highly

but who had no prior Predator UAV training. Participants competent UAV operator. There are stochastic

completed each maneuver for a fixed number of trials that characteristics (noise parameters) in ACT-R that result in
ranged from 12-24, depending on the difficulty of the variability in the model's performance, so we run it 20
maneuver. Each participant completed the maneuvers in times to get an average. This is not the same as simulating
order, starting with Maneuver- 1 and ending with 20 different people doing the task. Itis a simulation of theManeuver 7. The SME data plotted in the figures below same person doing the task 20 times (without learning
come from successful trials only, where success defined from one run to the next). The confidence intervals in the

as flying within the performance deviation criteria used human data capture between-subjects variability. Since
by Schreiber, et al. (2002). The important thing to we just haveone nmodel subject, it wouldbe inappropriate
understand is that the human data come from trials in to plot confidence intervals. Therefore, it is a point
which the SMEs flew well, relative to the performance prediction.
goals. We use these data for the comparison because the -.5
current modeling goal is to develop a performance model
of skilled aircraft maneuvering. Therefore, the appropriate
comparison is between all model trials and human trials in
which the participants did well at executing the maneuver. • -1.0- ----------------

Performance
0

At the highest level of analysis, we are interested in how
closely the model approximates expert pilot performance -1.5----- -------------
on the whole. When UAV operators fly a mission, they
typically are responsible for executing hundreds or
thousands of maneuvers over many hours. We would
hope that on the whole the model's performance is at a -2.0,
level of proficiency that reasonably approximates the SMEs Model
proficiency of our experts.

Aggregating up to the level of average task Figure 1: Aggregate comparison of SME performance and
performance for flying the UAV STE requires averaging model performance
over the airspeed, altitude, and heading deviation
performance measures. Those measures are on different It is reassuring that, at least on the whole, the model
scales. Therefore, the RMSD data within each flies the UAV STE at a level of proficiency equivalent to
performance measure are converted to z scores. These that of expert pilots. If we de-aggregate down to the level
normalized values are then summed for each trial, of average performance on each maneuver, we see that
resulting in a Sum RMSD (z) score. Those scores are the fit of the model to pilot performance does vary by
averaged to provide a Mean Sum RMSD (z) score for maneuver. Those data are available in Figure 2.
each participant in each maneuver (49 scores total - 7 Across maneuvers, the model corresponds to human
participants on each of 7 maneuvers). Those scores are performance with an r2 = .64 and a root mean squared
then averaged across maneuvers, to get an average RMSD scaled deviation (RMSSD) of 3.45, meaning that on
(z) for each participant. Those seven averages are used to
compute a Grand Mean RMSD (z) score and a 95%
Confidence Interval for participant performance. The
Grand Mean and 95% CI are plotted in Figure 1.
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average the model data deviate 3.45 standard errors from number of axes maneuvered were observed for both the
the SME data.' Model, F(2,137) = 59.0 2 ,p < .001, and SMEs, F(2,449)

2, 37.05, p < .001. For both the Model and SMEs,
2 I I I I performance was significantly better on one-axis

•. I I I Imaneuvers compared to two-axes maneuvers, t(137)=

I.II T" 6.77,p<.001 andt(449)=2.95,p<.01,andontwo-axes
compared to three-axes maneuvers, t(137) = 5.56, p <

I IT ir _L.00 1, and t(449) = 6.82, p < .00 1, respectively. Thus, the

1. 1I41 1 1 model captures these difficulty effects, even though it was
i I , --- if I not intentionally engineered to do so. These effects

-2 1 emerge naturally from the general design of the model.
.4l 9•a SMEs

-3I I I VariabilityI I I I I

-4 -0 .I I I I " Model There is variability in the model's behavior, but that

1 2 3 4 5 6 7 variability is not represented in Figures 1 and 2. The
appropriate comparison for assessing the extent to which
the variability in the model's behavior is a good

Maneuver approximation to human variability is a within-subjects

Figure 2: Comparison of SME and model performance comparison. The standard deviation (SD) of the RMSD
by maneuver (z) scores was computed for each participant and the

model, separately by maneuver. These SD's were then
It is hard to know whether to be pleased with these fits, aggregated up to the task level, in a-manner identical to

since there are still no commonly accepted standards for that used for the performance data. The resulting Grand
assessment (Estes, 2002) in the cognitive modeling Mean and 95%CI, along with the point prediction for the
community. To get a better sense for how we should model's variability, are plotted in Figure 3.
interpret these results, we ran the same goodness of fit
measures for each of the human participants, pulling them 1.00 - -
one at a time, without replacement, from the sample. We
tested the fit of P1 to the data from P2-P7, then the fit of
P2 to the data from P1, P3-P7, and so on. The average
human fit is r2 = .75 and RMSSD = 2.95. So the model's 80----- -------------
fit to overall human performance is only a little worse
than the average individual human pilot's fit to overall
human performance. In fact, it turns out P5's fit to the
other participants is r2 = .63 and RMSSD = 4.92, which is
actually worse than the model's fit. We interpret this as • .60- ---------------

evidence that the model is a good approximation to expert
performance on this task.

There are two things worth noting about the model data. .40
First, the fact that it is a performance model, and not a
learning model, does play a role in decreasing the fit to SMEs Model
the human data. Since the SMEs progressed through the
seven basic maneuvers in sequence, it would be Figure3: Aggregate comparisonofSMEvariabilityand
reasonable to assume that more learning occurred during model variability
Maneuver 1 relative to Maneuver's 2 through 7. This
would explain the relatively large performance difference Here we see that variability in the model's performance
between SMEs and the model on Maneuver 1. In fact, if lly exceeds the human pilot variability. Compared to
we compute the fit using only data from Maneuver's 2 SMEs, the model was much more variable in performancethog ,r 2 increases to .74 and RMSSD drops to 3.20. across trials within each maneuver. The variability in
through 7, r2icesst 7 n MS rp o32. model performance is partially due to the noise

Second, it is noteworthy that the model is sensitive to modeterforma nce chue tovtionsmaneuver complexity. Significant main effects of the parameters in ACT-R, which influence chunk activations
and production selection, but also is due to the shifting,
dynamic environment in which the model is operating.

'See http://www.lrdc.pitt.edu/schunn/gof/index.html for a Figure 4 plots the SME and model variability
discussion of RMSSD as a measure of goodness of fit. comparison by maneuver. Plotting the data by maneuver
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reveals that the model was within the 95%CI for human circumventing the architecture. There are no ad hoc
variability on 3 of the maneuvers. However, the model modules or buffers. We are using the default 50 msec
was so much more variable from trial to trial in Maneuver cognitive cycle time, and all perceptual inputs and motor
7 that it's average variability ends up being greater than movements are implemented using class definitions that
that seen in the human data. The fit on average within- are consistent with the design of the perceptual and motor
subject variability between model and SME data was r2 = modules. It is not unusual, when taking an architecture
.25, and RMSSD = 4.85. into unexplored territory, to have to modify or circumvent

it in some way, even if temporarily, in order to get the
2.0, 1 1 I I desired behaviors or effects. We have not had to do that.
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